Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Appl Clin Med Phys ; 25(5): e14354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38620004

RESUMO

PURPOSE: In 2019, a formal review and update of the current training program for medical physics residents/registrars in Australasia was conducted. The purpose of this was to ensure the program met current local clinical and technological requirements, to improve standardization of training across Australia and New Zealand and generate a dynamic curriculum and programmatic assessment model. METHODS: A four-phase project was initiated, including a consultant desktop review of the current program and stakeholder consultation. Overarching program outcomes on which to base the training model were developed, with content experts used to update the scientific content. Finally, assessment specialists reviewed a range of assessment models to determine appropriate assessment methods for each learning outcome, creating a model of programmatic assessment. RESULTS: The first phase identified a need for increased standardized assessment incorporating programmatic assessment. Seven clear program outcome statements were generated and used to guide and underpin the new curriculum framework. The curriculum was expanded from the previous version to include emerging technologies, while removing previous duplication. Finally, a range of proposed assessments for learning outcomes in the curriculum were generated into the programmatic assessment model. These new assessment methods were structured to incorporate rubric scoring to provide meaningful feedback. CONCLUSIONS: An updated training program for Radiation Oncology Medial Physics registrars/residents was released in Australasia. Scientific content from a previous program was used as a foundation and revised for currency with the ability to accommodate a dynamic curriculum model. A programmatic model of assessment was created after comprehensive review and consultation. This new model of assessment provides more structured, ongoing assessment throughout the training period. It contains allowances for local bespoke assessment, and guidance for supervisors by the provision of marking templates and rubrics.


Assuntos
Currículo , Física Médica , Radioterapia (Especialidade) , Radioterapia (Especialidade)/educação , Humanos , Física Médica/educação , Internato e Residência , Competência Clínica/normas , Austrália , Educação de Pós-Graduação em Medicina/métodos , Avaliação Educacional/métodos , Nova Zelândia
2.
Med Phys ; 51(5): 3165-3172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588484

RESUMO

BACKGROUND: Simulated error training is a method to practice error detection in situations where the occurrence of error is low. Such is the case for the physics plan and chart review where a physicist may check several plans before encountering a significant problem. By simulating potentially hazardous errors, physicists can become familiar with how they manifest and learn from mistakes made during a simulated plan review. PURPOSE: The purpose of this project was to develop a series of training datasets that allows medical physicists and trainees to practice plan and chart reviews in a way that is familiar and accessible, and to provide exposure to the various failure modes (FMs) encountered in clinical scenarios. METHODS: A series of training datasets have been developed that include a variety of embedded errors based on the risk-assessment performed by American Association of Physicists in Medicine (AAPM) Task Group 275 for the physics plan and chart review. The training datasets comprise documentation, screen shots, and digital content derived from common treatment planning and radiation oncology information systems and are available via the Cloud-based platform ProKnow. RESULTS: Overall, 20 datasets have been created incorporating various software systems (Mosaiq, ARIA, Eclipse, RayStation, Pinnacle) and delivery techniques. A total of 110 errors representing 50 different FMs were embedded with the 20 datasets. The project was piloted at the 2021 AAPM Annual Meeting in a workshop where participants had the opportunity to review cases and answer survey questions related to errors they detected and their perception of the project's efficacy. In general, attendees detected higher-priority FMs at a higher rate, though no correlation was found between detection rate and the detectability of the FMs. Familiarity with a given system appeared to play a role in detecting errors, specifically when related to missing information at different locations within a given software system. Overall, 96% of respondents either agreed or strongly agreed that the ProKnow portal and training datasets were effective as a training tool, and 75% of respondents agreed or strongly agreed that they planned to use the tool at their local institution. CONCLUSIONS: The datasets and digital platform provide a standardized and accessible tool for training, performance assessment, and continuing education regarding the physics plan and chart review. Work is ongoing to expand the project to include more modalities, radiation oncology treatment planning and information systems, and FMs based on emerging techniques such as auto-contouring and auto-planning.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Física Médica/educação , Humanos , Erros Médicos/prevenção & controle
3.
Int J Radiat Oncol Biol Phys ; 118(2): 325-329, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689369

RESUMO

PURPOSE: The American Association of Physicists in Medicine Radiation Oncology Medical Physics Education Subcommittee (ROMPES) has updated the radiation oncology physics core curriculum for medical residents in the radiation oncology specialty. METHODS AND MATERIALS: Thirteen physicists from the United States and Canada involved in radiation oncology resident education were recruited to ROMPES. The group included doctorates and master's of physicists with a range of clinical or academic roles. Radiation oncology physician and resident representatives were also consulted in the development of this curriculum. In addition to modernizing the material to include new technology, the updated curriculum is consistent with the format of the American Board of Radiology Physics Study Guide Working Group to promote concordance between current resident educational guidelines and examination preparation guidelines. RESULTS: The revised core curriculum recommends 56 hours of didactic education like the 2015 curriculum but was restructured to provide resident education that facilitates best clinical practice and scientific advancement in radiation oncology. The reference list, glossary, and practical modules were reviewed and updated to include recent literature and clinical practice examples. CONCLUSIONS: ROMPES has updated the core physics curriculum for radiation oncology residents. In addition to providing a comprehensive curriculum to promote best practice for radiation oncology practitioners, the updated curriculum aligns with recommendations from the American Board of Radiology Physics Study Guide Working Group. New technology has been integrated into the curriculum. The updated curriculum provides a framework to appropriately cover the educational topics for radiation oncology residents in preparation for their subsequent career development.


Assuntos
Educação Médica , Internato e Residência , Radioterapia (Especialidade) , Humanos , Estados Unidos , Radioterapia (Especialidade)/educação , Física Médica/educação , Currículo
5.
J Appl Clin Med Phys ; 24(10): e14151, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708093

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica , Radioterapia (Especialidade) , Humanos , Estados Unidos , Física Médica/educação , Sociedades , Revisão por Pares
6.
J Appl Clin Med Phys ; 24(10): e14124, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37602785

RESUMO

Northwest Medical Physics Center (NMPC) is a nonprofit organization that provides clinical physics support to over 35 radiation therapy facilities concentrated in the Pacific Northwest. Although clinical service is the primary function of NMPC, the diverse array of clinical sites and physics expertise has allowed for the establishment of structured education and research programs, which are complementary to the organization's clinical mission. Three clinical training programs have been developed at NMPC: a therapy medical physics residency program accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), an Applied Physics Technologist (APT) program, and a summer undergraduate internship program. A partnership has also been established with a major radiation oncology clinical vendor for the purposes of validating and testing new clinical devices across multiple facilities. These programs are managed by a dedicated education and research team at NMPC, made up of four qualified medical physicists (QMPs). The education and research work has made a significant contribution to the organization's clinical mission, and it has provided new training opportunities for early-career physicists across many different clinical environments. Education and research can be incorporated into nonacademic clinical environments, improving the quality of patient care, and increasing the number and type of training opportunities available for medical physicists.


Assuntos
Educação Médica , Internato e Residência , Radioterapia (Especialidade) , Humanos , Competência Clínica , Currículo , Física Médica/educação
8.
J Appl Clin Med Phys ; 24(3): e13895, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739483

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the US. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the US. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and must not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and should not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica , Radioterapia (Especialidade) , Humanos , Estados Unidos , Física Médica/educação , Lista de Checagem , Sociedades
9.
J Appl Clin Med Phys ; 24(3): e13829, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808798

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines (MPPGs) will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (1) Must and must not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (2) Should and should not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM's Executive Committee April 28, 2022.


Assuntos
Braquiterapia , Radioterapia (Especialidade) , Humanos , Estados Unidos , Física Médica/educação , Sociedades
10.
J Cancer Educ ; 38(3): 813-820, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35761143

RESUMO

We sought to supplement medical physics textbook knowledge and clinical learning with case-based discussions. To our knowledge, this is the first report on a structured combined applied physics curriculum for radiation oncology (RO) and medical physics (MP) trainees. We reviewed our yearly applied physics course given from the years 2016-2021 inclusive. The number of applied physics trainees ranged from 7 to 14 per year (2-9 RO and 3-6 MP residents per year). Each session was taught by a pair of (RO and MP) faculty members. Twenty-nine case-based sessions were given yearly (2016 to 2019). Because of the COVID-19 pandemic restrictions, the course was shortened to 8 case-based sessions in 2020 and 2021. For the years 2016-2021, the mean and median teaching evaluation scores were 4.65 and 5, respectively (range 2-5), where 1 represents worse teaching quality and 5, the best teaching quality. For the year 2021, 2 questions relating to the video virtual format (implemented due to the covid-19 pandemic), revealed consistent high scores with the mean and median responses of 4.14 and 5, respectively (range 1-5). The results from the teaching evaluation scores indicate that the trainees highly valued the teaching sessions and teachers. Our experience indicates that a case-based applied physics course was delivered successfully with continued high teaching evaluation scores. A video virtual platform for an applied physics course could be useful, especially for small programs without a structured applied physics curriculum.


Assuntos
COVID-19 , Internato e Residência , Radioterapia (Especialidade) , Humanos , Radioterapia (Especialidade)/educação , Pandemias , Física Médica/educação , Currículo
11.
J Appl Clin Med Phys ; 23(12): e13777, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125203

RESUMO

Entry into the field of clinical medical physics is most commonly accomplished through the completion of a Commission on Accreditation of Medical Physics Educational Programs (CAMPEP)-accredited graduate and residency program. To allow a mechanism to bring valuable expertise from other disciplines into clinical practice in medical physics, an "alternative pathway" approach was also established. To ensure those trainees who have completed a doctoral degree in physics or a related discipline have the appropriate background and didactic training in medical physics, certificate programs and a CAMPEP-accreditation process for these programs were initiated. However, medical physics-specific didactic, research, and clinical exposure of those entering medical physics residencies from these certificate programs is often comparatively modest when evaluated against individuals holding Master's and/or Doctoral degrees in CAMPEP-accredited graduate programs. In 2016, the AAPM approved the formation of Task Group (TG) 298, "Alternative Pathway Candidate Education and Training." The TG was charged with reviewing previous published recommendations for alternative pathway candidates and developing recommendations on the appropriate education and training of these candidates. This manuscript is a summary of the AAPM TG 298 report.


Assuntos
Educação Médica , Internato e Residência , Radioterapia (Especialidade) , Humanos , Física Médica/educação , Competência Clínica , Educação de Pós-Graduação em Medicina
12.
J Appl Clin Med Phys ; 23(7): e13664, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699199

RESUMO

There is no current authoritative accounting of the number of clinical imaging physicists practicing in the United States. Information about the workforce is needed to inform future efforts to secure training pathways and opportunities. In this study, the AAPM Diagnostic Demand and Supply Projection Working Group collected lists of medical physicists from several state registration and licensure programs and the Conference of Radiation Control Program Directors (CRCPD) registry. By cross-referencing individuals among these lists, we were able to estimate the current imaging physics workforce in the United States by extrapolating based on population. The imaging physics workforce in the United States in 2019 consisted of approximately 1794 physicists supporting diagnostic X-ray (1073 board-certified) and 934 physicists supporting nuclear medicine (460 board-certified), with a number of individuals practicing in both subfields. There were an estimated 235 physicists supporting nuclear medicine exclusively (150 board-certified). The estimated total workforce, accounting for overlap, was 2029 medical physicists. These estimates are in approximate agreement with other published studies of segments of the workforce.


Assuntos
Radioterapia (Especialidade) , Diagnóstico por Imagem , Física Médica/educação , Humanos , Física , Radioterapia (Especialidade)/educação , Radiografia , Estados Unidos , Recursos Humanos
13.
Radiother Oncol ; 170: 89-94, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35189156

RESUMO

PURPOSE: To update the 2011 ESTRO-EFOMP core curriculum (CC) for education and training of medical physics experts (MPE)s working in radiotherapy (RT), in line with recent EU guidelines, and to provide a framework for European countries to develop their own curriculum. MATERIAL AND METHODS: Since September 2019, 27 European MPEs representing ESTRO, EFOMP and National Societies, with expertise covering all subfields of RT physics, have revised the CC for recent advances in RT. The ESTRO and EFOMP Education Councils, all European National Societies and international stakeholders have been involved in the revision process. RESULTS: A 4-year training period has been proposed, with a total of 240 ECTS (European Credit Transfer and Accumulation System). Training entrance levels have been defined ensuring the necessary physics and mathematics background. The concept of competency-based education has been reinforced by introducing the CanMEDS role framework. The updated CC includes (ablative) stereotactic-, MR-guided- and adaptive RT, particle therapy, advanced automation, complex quantitative data analysis (big data/artificial intelligence), use of biological images, and personalized treatments. Due to the continuously increasing RT complexity, more emphasis has been given to quality management. Clear requirements for a research project ensure a proper preparation of MPE residents for their central role in science and innovation in RT. CONCLUSION: This updated, 3rd edition of the CC provides an MPE training framework for safe and effective practice of modern RT, while acknowledging the significant efforts needed in some countries to reach this level. The CC can contribute to further harmonization of MPE training in Europe.


Assuntos
Inteligência Artificial , Radioterapia (Especialidade) , Currículo , Europa (Continente) , Física Médica/educação , Humanos , Radioterapia (Especialidade)/educação
15.
Int J Radiat Oncol Biol Phys ; 108(5): 1284-1291, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711038

RESUMO

PURPOSE: To evaluate the efficacy of a training program designed to teach medical physicists how to communicate with patients effectively in the clinical environment. METHODS AND MATERIALS: The training program was offered 3 times between 2016 and 2019. Participants were asked to rank their level of confidence in 5 categories relevant to patient communication on a 5-point Likert scale at 3 separate time points over the course of the training program. Participants were also asked to provide written responses to 5 common questions from patients at 2 separate time points, and these responses were numerically scored using the Constant Comparative Method. Competency in patient communication was assessed during simulated patient consults using a 9-element clinical competency assessment form. Changes in participants' stated level of confidence over the course of the training program and differences between faculty and residents were analyzed using the Student t test, and participants' scored responses to common questions were analyzed using analysis of variance. RESULTS: Fifteen medical physicists participated in the training program: 6 resident physicists (4 first year and 2 second year) and 9 faculty physicists. Mean participant-stated level of confidence increased significantly across all categories (P < .05) between the first and second training intervention and between the second and third training intervention. There was no significant difference in mean participant-stated level of confidence between faculty and resident medical physicists. We observed statistically significant improvements in scored responses to common patient questions between the 2 assessment time points (P < .05). Of the 15 participants, 14 met competency assessment goals during simulated patient consults. CONCLUSIONS: The patient communication skills training program increases medical physicists' level of confidence across 5 patient communication categories and improves their responses to common questions from patients. In addition, the program can discern differences in communication competency between physicists.


Assuntos
Atitude do Pessoal de Saúde , Comunicação , Física Médica/educação , Relações Profissional-Paciente , Competência Clínica , Educação Baseada em Competências/métodos , Docentes , Humanos , Internato e Residência , Mentores , Simulação de Paciente , Avaliação de Programas e Projetos de Saúde , Radioterapia (Especialidade)/educação , Autoimagem , Treinamento por Simulação/métodos
17.
J Med Imaging Radiat Sci ; 50(2): 212-219, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31176428

RESUMO

BACKGROUND: As health care technologies continue to advance rapidly, resulting in improved standards of practice, it is essential for health care professionals to continually expand on their current skills and knowledge. We describe here an initiative to use open education resources to provide ongoing education in radiation medical sciences and imaging. AIMS: The aim of this study to design an interactive, engaging, multilevel radiation medical physics resource, which is fully open to the public, and functional on all types of computing devices. Our primary target audiences are students and workers in medical radiation technology and other health care professionals as part of their continuing professional development. DESIGN AND DEVELOPMENT: The three tasks of design, development, and content creation were most efficiently performed in parallel wherever possible. A modern responsive web design was adopted to target all desktop and mobile devices. Only open-source tools and libraries were used in developing the OpenPhys website. OVERALL WEBSITE DESIGN AND NAVIGATION: The homepage is a modern tile-based design containing one coloured tile for each lesson. Clicking anywhere on a coloured lesson tile will open up a two-dimensional interactive concept map linking to content pages. Currently, 10 lessons are available online ranging from the electronic structure of the atom to MRI basics: "NMR" and "Inside a Pixel". Lesson pages include text, images, graphics, equations, quizzes, and interactive animations. USER FEEDBACK: An online questionnaire was emailed to current radiation therapy students at the University of Alberta and alumni regarding the functionality and navigation of the website. DISCUSSION/CONCLUSION: To our knowledge, OpenPhys is the first open education resource specializing in radiation physics and medical imaging. We believe OpenPhys will fill existing gaps in the realm of physics education delivery and could be a component of a blended learning initiative. Future steps will include a formal evaluation of the website and content.


Assuntos
Instrução por Computador , Física Médica/educação , Internet , Radiologia/educação , Física Médica/organização & administração , Humanos , Radiologia/organização & administração , Tecnologia Radiológica/educação , Tecnologia Radiológica/organização & administração , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA